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ABSTRACT
In this paper, we discuss the role that gesture plays for an embodied
intelligent virtual agent (IVA) in the context of multimodal task-
oriented dialogues with a human. We have developed a simulation
platform, VoxWorld, for modeling and building Embodied Human-
Computer Interactions (EHCI), where communication is facilitated
through language, gesture, action, facial expressions, and gaze track-
ing. We believe that EHCI is a fruitful approach for studying and
enabling robust interaction and communication between humans
and intelligent agents and robots. Gesture, language, and action are
generated and interpreted by an IVA in a situated meaning context,
which facilitates grounded and contextualized interpretations of
communicative expressions in a dialogue. The framework enables
multiple methods for performing evaluation of gesture generation
and recognition. We discuss four separate scenarios involving the
generation of non-verbal behavior in dialogue: (1) deixis (pointing)
gestures, generated to request information regarding an object, a
location, or a direction when performing a specific action; (2) iconic
action gestures, generated to clarify how (what manner of action) to
perform a specific task; (3) affordance-denoting gestures, generated
to describe how the IVA can interact with an object, even when it
does not know what it is or what it might be used for; and (4) direct
situated actions, where the IVA responds to a command or request
by acting in the environment directly.
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KEYWORDS
gesture interpretation, gesture generation, multimodal embodiment,
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1 INTRODUCTION
Human-to-human communication is essential to daily communica-
tion. Getting to this level of communication with intelligent avatars
interacting with humans requires further work than the current

approach to conversational agents (CAs), such as Apple’s Siri or
Amazon’s Alexa or approaches to embodied converstational agents
(ECAs). We present a direction forward when dealing with the chal-
lenges confronting the generation and recognition of non-verbal
behavior in the context of multimodal interactions involving an
Intelligent Virtual Agent (IVA) with a human. This research shows
that a bidirectional IVA is required for a realistic interaction. The
simulation platform for modeling such interactions is called Em-
bodied Human-Computer Interactions (EHCI).

The system used is called VoxWorld, which is a multimodal dia-
logue system enabling communication through language, gesture,
action, facial expressions, and gaze tracking, in the context of task-
oriented interactions. A multimodal simulation is an embodied
3D virtual realization of both the situational environment and the
co-situated agents, as well as the most salient content denoted by
communicative acts in a discourse. It is built on the modeling lan-
guage VoxML [33], which encodes objects with rich semantic typing
and action affordances, and actions themselves as multimodal pro-
grams, enabling contextually salient inferences and decisions in
the environment. VoxWorld enables an embodied HCI by situating
both human and computational agents within the same virtual sim-
ulation environment, where they share perceptual and epistemic
common ground.

Within an embodied HCI, actions, gesture, language, and fa-
cial expressions are all interpreted and generated by an IVA in an
environment where meaning is situationally grounded and contex-
tualized to the discourse and updates in the environment.

This IVA is unique in that is a symmetric model of non-verbal
behavior for the IVA. This entails being able to both recognize and
generate an expression in the context of an interaction with a hu-
man partner (interlocutor). This bidirectionality to the interaction
is enabled by the IVA being contextualized in an embodied interac-
tion, where both the output to the gesture classifier and the input
to the gesture generation reference the same underlying semantic
representation. This is illustrated in 1, where on the left, a human
is action gesturing to move an object to the left, while on the right,
the IVA is performing the identical gesture.
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Figure 1: Bidirectional gesture recogni-
tion and generation.

To illustrate
the role of EHCI
in planningmul-
timodal inter-
actions, we dis-
cuss four dif-
ferent scenar-
ios involving
the generation
of non-verbal

behavior:
(1) deixis (pointing) gestures, generated to request information

regarding an object, a location, or a direction when perform-
ing a specific action;

(2) iconic action gestures, generated to request clarification on
how (what manner of action) to perform a specific task;

(3) affordance-denoting gestures, generated to describe how the
IVA can interact with an object, even when it does not know
what it is or what it might be used for;

(4) direct situated actions, where the IVA responds to a com-
mand or request by acting in the environment directly.

2 EMBODIED HCI
There has been a growing interest in the Human-Robot Interaction
(HRI) community on how to contextually resolve ambiguities that
may arise from communication in situated dialogues, from earlier
discussions on how HRI dialogues should be designed [14, 20, 24,
35], modeling deixis and gaze [31], affective states in conversa-
tion [10], how perception and grounding can be integrated into
language understanding [22, 28], to pedagogy [25], and recent work
on task-oriented dialogues [40]. This is the problem of identifying
and modifying the common ground between speakers [3, 8, 39, 41].
While it has long been recognized that an utterance’s meaning is
subject to contextualized interpretation, this is also the case with
gestures in task-oriented dialogues.

Figure 2: Mother and child bak-
ing.

Recently, we have ar-
gued that natural human-
computer interactions in-
volving intelligent vir-
tual agents (IVAs) require
not only that the agent it-
self be embodied, but that
the entire interaction be-
tween the human and the
IVA must be embodied,
in order to fully establish
the common ground that

both agents share to communicate fluently [34] . This is referred
to as an embodied Human-Computer Interaction, and we adopt this
view for this paper.

For example, in typical task-oriented interactions between hu-
mans, (as shown in Fig. 2), actions, gesture, and language are sit-
uated within a common ground. In such situations, the common
ground includes the following characteristics:

• Co-situatedness and co-perception of the agents, such that
they can interpret the same situation from their respective
frames of reference.

• Co-attention of shared situated references, allowing richer
expressiveness in referring to the environment (i.e., through
language, gesture, visual presentation, etc.). The human
and avatar might be able to refer to objects on the table
in multiple modalities with a common model of differences
in perspective-relative references

• Co-intent or agreement of the common goals in a dialogue.
It is important to recognize the intent of other agents, to
facilitate the interpretation of their expressions.

In order to achieve these goals, human-computer/robot interactions
requires robust recognition and generation of expressions through
multiple modalities (language, gesture, vision, action); and the en-
coding of situated meaning: this entails three aspects of common
ground interpretation: (a) the situated grounding of expressions in
context; (b) an interpretation of the expression contextualized to
the dynamics of the discourse; and (c) an appreciation of the actions
and consequences associated with objects in the environment.

With this in mind, many HCI researchers have adopted the no-
tion of “embodiment” in order to better understand user expec-
tations when interacting with computational agents [13, 15, 26].
Embodied agents or avatars add new dimensions to human/agent
interactions compared to voice- or text-only conversational agents.
Embodied agents can express emotions and perform gestures, two
crucial non-verbal modes of human communication. Potentially,
this enables such agents to have more human-like, peer-to-peer
interactions with users. Unfortunately, embodiment alone does not
avoid some of the key limitations of conversational agents. Even
embedded in an avatar, most agents won’t know what you are
pointing at. As with verbal conversations, visual communication
mechanisms like gestures, expressions, and body language need to
be a two-way communication.

Following [17, 27], we adopt VoxWorld as our environment sup-
porting embodied HCI. This platform enables embodied virtual
agents, who are aware not only of their own virtual space but of
the physical space of the human with whom they are interacting
and communicating. One such avatar, Diana, can speak, gesture,
track, move, and emote [17, 27]. Diana has video and depth sensors
that let her sense the physical world around her, including the user.
Diana observes the user, and knows when they are attending to her.
She can observe the user’s emotions, and most importantly she can
understand the user’s gestures. As a result, visual communication
joins verbal communication as a two-way process.

At the center of VoxWorld is the language VoxML [33] and the
associated software, VoxSim [18]. VoxML (Visual Object Concept
Modeling Language) is a modeling language for constructing 3D
visualizations of concepts denoted by natural language expressions,
and is used in the VoxWorld platform for creating multimodal se-
mantic simulations in the context of human-computer and human-
robot communication. VoxSim is the software that interprets the
encodings of objects and events as written in VoxML, and handles
visual event simulation in 3D, written with the Unity game engine.
3 VERBAL AND NON-VERBAL BEHAVIOR
The VoxWorld system enables multimodal communication between
a human and an IVA, for task-oriented dialogue and interaction.
Both human and IVA can use language, gesture, and facial expres-
sions to communicate with each other, and actions to move the task
forward; e.g., building a structure, moving objects, etc.
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The human acts as a “signaler,” indicating objects and actions
to Diana by means of speech and gesture. The user’s language
(speech) is captured by Google ASR and motions are captured using
a Microsoft Kinect v2 RGBD sensor. Gestures are detected in real
time using custom gesture recognition software [29] and sent to
the avatar. The avatar’s actions, gestures, and facial expressions are
displayed on the monitor for the human to see.

In the context of an embodied HCI, we consider a communicative
act, 𝐶𝑎 , performed by an agent, 𝑎, to be a tuple of expressions from
the diverse modalities available to an agent, involved in conveying
information to another agent. For our present discussion, let us
restrict this to the modalities of a linguistic utterance, 𝑆 (speech),
gesture, 𝐺 , facial expression, 𝐹 , gaze, 𝑍 , and an explicit action, 𝐴:
𝐶𝑎 = ⟨𝑆,𝐺, 𝐹, 𝑍,𝐴⟩. In order to align these modalities in the state
space within the dialogue manager, we assume that the common
ground structure associated with a state in a dialogue or discourse,
can be modeled as a state monad [4, 42]:M𝛼 = 𝑆𝑡𝑎𝑡𝑒 → (𝛼×𝑆𝑡𝑎𝑡𝑒).
This corresponds to those computations that read and modify a
particular dialogue state. M is a type constructor that constructs a
function type taking a state as input and returns a pair of a value
and a new or modified state as output.

To illustrate the manner in which information from diverse
modalities is encoded in the dialogue state, consider a communica-
tive act that exploits a combination of speech and gesture, (𝑆,𝐺).
We can identify three configurations for how a language-gesture
ensemble can be interpreted, depending on which modality carries
the majority of semantic content: (a) language with co-speech ges-
ture, where language conveys the bulk of the propositional content
and gesture adds situated grounding, affect, effect, and presuppo-
sitional force [5, 23, 36, 37]; (b) co-gestural speech, where gesture
plays this role [32]; and (c) a truly mixed modal expression, where
both language and gesture contribute equally to the meaning.

In practice, while many of the interaction in our dialogue ex-
periments have this property, the discourse narrative is broadly
guided by gesture. For this reason, we will view such multimodal
interactions as gesture with co-gestural speech. This is in fact, a
subclass of content-bearing gestures, where gesture is used to con-
vey the semantics normally carried by linguistic expressions. In
the discussion below, we focus on the interaction of gesture, facial
expressions, and gaze, with varying degrees of language.

3.1 Gesture
The language of gestures that the Diana IVA can recognize and
interpret grew out of a year long elicitation study. 60 subjects,
working in pairs, solved problems involving the construction of
structures made out of blocks. The studies placed each person in a
separate room with one designated as the signaler and the other the
builder. Both stood in front of a table and signaler and builder were
able to communicate with audio, video, or both depending upon the
scenario. The three scenarios were: speech only (the builder was
not allowed to see the video of the signaler); gesture only (no audio
in either direction); or both and speech and gesture (subjects could
both see and hear each other). In these experiments, the signaler
was shown a plan; a structure that the buider needed to construct.
The builder had a set of blocks. The heart of this experiment was
recording how the signaler and builder communicated with each
other in the course of successfully building the desired structure.

An interesting finding of this study is that subject pairs suc-
cessfully completed their task using speech only, gesture only, and
speech plus gesture. While the pairs completed the task about 20%
faster using both modalities, pairs successfully built the desired
structures in almost all cases using just gesture or just speech.

Key to the development of our gesture language was the careful
review of the roughly 12.5 hours of video for repeated use of what
could be considered a common gestural language. The result of the
hand labeling of video initially was 24,503 distinct video segments
representing what was judged to be a communicative act.

Further analyses over this large set of 24,503 segments led to us
identifying 35 hand gestures, 6 arm motions and 6 body movements
being used by more than 4 subjects. This labeled data became the
basis for the Diana IVA gesture recognition system. Arm and body
motions are captured using Kinect Skeleton data and interpreted
using a hand built classifier[45]. The hand gestures are captured
from Kinect depth images using a series of Resnet-style deep con-
volutional neural networks (DCNN)[16]. As a result, to support
the non-verbal gestural communication the real-time output from
these classifiers is streamed to the IVA through a blackboard.

Of the nearly 50 distinct gestures, some were predicatble and
some less so. For example, using a thumbs-up for postitive ack-
onwledgement was seen and this is not surprising. Perhaps more
surprising, a majority of people used the whole body action of either
stepping closer to, or away from, their table as a way of signally
either a desire for engagement or completion of a task.

Note from the above that our model for how an agent should use
gestures is fundamentally rooted in how people use gestures. This
leads to a related requirement: for an IVA in a symmetric peer-to-
peer interaction, the avatar should be capable of generating gestures
at the same level that it recognizes. When the range of recognized
gestures is known, this is a straightforward matter of animating
those same gestures on the avatar’s skeleton. Fig. 6 shows the avatar
generating some of the same gestures that it can recognize.

The avatar can also generate some gesture that the human never
makes: for instance, when the only manipulable objects exist in the
avatar’s virtual world, the human cannot reach for one of those
objects. However, since the avatar can recognize when the human
is pointing to one of the virtual objects, when the human does so,
the avatar will reach for that object. This serves as a non-verbal
“speech act" acknowledging receipt of the human’s pointing gesture,
and demonstrating an interpretation by generating a gesture.

For a more complex problem, such as generating a novel gesture
learned in the course of an interaction, we can mirror the recogni-
tion process by breaking down the gesture generation into hand
pose generation, where the avatar’s hand tracks to a predetermined
or calculated hand-pose, usually constructed relative to an object
(cf. Fig 5), and an arm motion, calculated by the inverse kinematics
(IK) within Unity, which causes all the arm joints between wrist
and shoulder to be placed and rotated appropriately to get the hand
into the required position.

3.2 Facial Expression and Gaze
Diana seeks to engage the user by providing non-verbal cues in
the form of facial expressions. Diana has the following expressions:
smile, frown, sad, frustrated, neural, and most importantly, the
ability to show concentration to the user. This latter expression was
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developed by surveying multiple users asking them from a set of
images which one looks more "concentrated". This is relevant since
Diana is performing a task and at times, looking concentrated is
required. Diana had three settings: showing no emotion, mirroring
the user’s emotion, or displaying emotion dependent on content
(the most useful scenario). The user expressions are determined
using the Affectiva API.

Diana’s response is determined by the user’s expression and the
data collected in a human-to-human builder and signaler task of
40 instances where users where asked to be either a builder (i.e.,
someone in charge to build a shapewith the blocks) or a signaler (i.e.,
someone telling the builder what to build). This provides insight
into the right responses that Dianamust have in order to be effective,
as Diana is the builder and the user is the signaler. For example, if
a user is showing frustration or anger, builders showed empathy
towards the user by having a gentle smile.

Diana also sees and accommodates the direction of the user’s
gaze. For instance, if the user looks off screen toward the left, Diana
will look in that direction as well, attending to the interruption
in conversation. In these circumstances, Diana will ignore speech
input, acting as if she believes that anything the human says while
looking in this direction is not directed toward her.

3.3 Action
Within VoxWorld, the primary focus has been on the generation
of actions over objects performed in the simulation environment
inhabited by the IVA (Diana). These include the following action
primitives: grasp, hold, touch move, push, pull, turn, and slide. In ad-
dition, composite (or complex) actions are generated by combining
these actions, using the composition mechanisms of VoxML: put,
place, and stack. Recognition of these same actions by the IVA is in
principle possible, but the focus thus far has been on recognition
of multimodal communicative expressions in the dialogue.

4 GENERATING NON-VERBAL BEHAVIOR
4.1 Deictic and Action Gesture Generation

Figure 3: Gesture
clarifies the target
of an action.

Generating non-verbal behavior in
an interaction is crucial for the agent’s
behavior to be believable [9]. Diana can
perform deictic gestures to clarify that
a particular object or location is the one
intended by the user (cf. Fig. 3).

Similarly, gesture can be used to di-
rect complete actions, by identifying ob-
jects through deixis, indicating actions
to be performed, and designating the
intended goas location for the action.

(cf. Fig. 4). Diana can generate not only individual gestures, but
composite gestures, to carry out entire actions over objects, such
as that illustrated below.

Single Modality (Gesture) Imperative

diana1: G = [points to the purple block]𝑡1
diana2: G = [makes move gesture]𝑡2
diana3: G = [points to the blue block]𝑡3

This is rendered in VoxWorld as the gesture sequence shown
in Fig. 7, which can only be interpreted relative to the situated
grounding available to the IVA and human user (cf. Fig. 4).

Figure 4: Configuration of blocks on table.
4.2 Affordance Gesture Generation

Figure 5: Generating an affordance-
denoting gesture to describe what the
IVA knows about an object

Objects can
be analogized
to each other
in terms of
their behav-
iors, and these
analogies can
bemademore
specific and
accurate by
comparing both
the behav-
iors an ob-
ject facilitates by virtue of its structure or purpose (afforded behav-
iors) and the spatial situations, or habitats in which they occur. That
is, if an agent encounters an object for which it knows no name but
can determine that it has a number of affordances in common with
another object, it can use that second object as a starting point to
reason about the first.

For example, if the agent comes across an unfamiliar object that
appears to share the 𝐻 [2] = [up = 𝑎𝑙𝑖𝑔𝑛(𝑌, E𝑌 ), top = 𝑡𝑜𝑝 (+𝑌 )]
(upward alignment) habitat of [[cup]]1, she can infer that it might
be grasped in a similar way. Fig. 5 shows this process enacted
through dialogue. In frame 1 (on the left), the human points to a new
object (recognizable as a bottle, but Diana has no label associated
with it). Diana reaches toward the object to acknowledge the object
human’s deixis. In frame 2 (on the right), Diana is demonstrating
her the method of grasping she infers from that object’s observed
similarity to a cup.
4.3 Action Generation
This is quite straightforward, as it involves carrying out an action
in the virtual environment, in response to the current state of the
dialogue or a request from the user. When prompted to move a
block, Diana responds by simply carrying out the action directly,
what we call "communication by direct action".

4.4 Facial Expression Generation
Existing ECAs used Ekman’s [11] seven basic emotions, such as [6,
7, 12, 21, 30, 38]. However, in a bidirectional IVA designed for col-
laboarative task building (signaler/builder), this proves a challenge.

1This can be approximately glossed as the cup’s Y-axis is aligned upward with the
Y-axis of the embedding space, and if something is put inside the cup, the cup contains
that thing
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Table 1: Diana’s action unit code combinations compared with other code combinations.
Affective States FACS [11] SmartBody [1] Diana’s Action Units
Joy 6 + 12 (Happiness) same BrowsUp + NoseScrunch + MouthNarrow + Smile
Sympathy 1 + 4 + 15 (Sadness) 1 + 4 + 6 BrowsOuterLower + BrowsDown + Frown + NoseScrunch + MouthNarrow
Confusion 4 + 7 + 15 + 17 + 23 [2] - BrowsIn + Squint + NoseScrunch + JawDown
Concentration - - BrowsUp + EyesWide

In such environments where the IVA and the user work together
towards a common goal, if Diana expressed anger when the user
is showing anger as well, it will create conflict between the avatar
and the user. Therefore, the performance may be hindered by this
negative action of the avatar. While this is possible in a human-to-
human collaboration task, in the dataset, the builder was always
empathetic to the user.

Using previous work and the data analysis of CSU’s EGGNOG
videos [43], four responsive affective states were integrated on
Diana’s face. Considering the difficulty of studies in the HCI field
to model empathy comprehensively [44], Diana’s facial expressions
used key concepts in her affect perception and generation modules
were Thinking from Others Perspectives and the Appraisal Theory,
components that resided in the highest level of the hierarchical
model of empathy for embodied agents [44].

Diana’s facial expression were design by combining knowledge
gained by Ekman’s units and SmartBody, along with the action
units that associated with high recognition accuracy and judg-
ment of human-likeness by [6]. Joy and sympathy were developed
by combining similar definitions in the Facial Action Coding Sys-
tem [11]. For confusion, selected action units that were found to
contribute to the perception of confusion were used. As for concen-
tration, we proposed our creations by observing human behavior
in EGGNOG [43] and asking participants in a survey to select an
image that depicted confusion. Those missing action units in the
character were replaced by movements of similar facial morph
targets. Finally, synthesized facial expression was generated by
linear movements towards pre-defined thresholds of the values of
morph targets. Table 1 shows Diana’s action code combinations
for expressions compared with the code combinations in standard
Facial Action Coding System [11] and SmartBody [1] (a characther
animation application).

5 EVALUATION OF NON-VERBAL BEHAVIOR
Referring expressions and definite descriptions of objects in space
exploit information about both object characteristics and locations.
Linguistic referencing strategies can rely on increasingly high-level
abstractions to distinguish an object in a given location from sim-
ilar ones elsewhere, yet the description of the intended location
may still be unnatural or difficult to interpret. [19] measured how
humans evaluate multimodal referring expression generated by a
virtual avatar. The study generated 1500 visualizations of an avatar
referring to one of 6 non-distinct objects in a virtual environment.
In these visualizations a target object was first indicated by a pink
circle, and then the avatar referred to it using a stochastically-
determined strategy. The video was then shown to annotators who
rated the referring strategy shown in terms of naturalness. Ref-
erencing strategies included some combination of deictic gesture
and language, from gesture only to language only to “ensemble”
[32] or multimodal referring expressions consisting of a pointing

gesture with an accompanying linguistic utterance. Linguistic re-
ferring strategies may indicate objects by color or location relative
to other objects, and demonstratives (“this”/“that”) when accompa-
nied by a deictic gesture. By analyzing this data we were able to
determine that humans consider multimodal referring expressions
more natural than purely linguistic or purely gestural strategies.
More descriptive language is also preferred, even in the context of
a multimodal referring expression.

There are some shortcomings in this data and analysis.
(1) The data is on the small side, depending on the number of

parameters that are useful for training a particular model.
(2) The data was gathered over single instances of object ref-

erences in isolation. In an actual interaction (as in between
people), people may use temporal or state history (e.g., “pick
up the cup next to the block you just put down").

(3) The existing data describes how people interpret referring
expression, but the data has not been used to train amodel for
generating referring expressions (generation in the original
study was done stochastically). As such, data has only been
gathered on interpretation, and not the other half of the
problem, generation.

A sophisticated generation model requires more data than currently
exists, and data that encompasses more types of information in
referring strategies, entailing the need to tackle problems (1) and (2)
and we are developing a study using the Diana IVA to elicit further
data on how humans use multimodal referring expressions.

6 CONCLUSION
In this paper, we present an embodied Human-Computer Interac-
tion framework within which language, gesture, and other non-
verbal behaviors are used for communication between humans and
intelligent agents. Here we have focused on generation of gesture,
facial expressions, and actions, in the course of task-oriented dia-
logue. One unique feature of the system is the bidirectional nature
of the capabilities: anything recognized is also generable by the IVA.
We believe the system to be a useful platform for experimentation
and evaluation studies.
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Interpreting and Generating Gestures with
Embodied Human Computer Interactions

Figure 6: Some of the gestures generated by VoxWorld: pointing, grab, five, no, yes, push back.

Figure 7: Gesture generation for performing complex action.
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