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Reasoning with Affordances

Course Outline

Monday: Components of Multimodal Communication

Tuesday: Modeling Human-Object Interactions

Wednesday: Modeling Multimodal Common Ground

Thursday: Communicating with Multimodal Common Ground

Friday: Reasoning with and about Affordances
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Reasoning with Affordances

Friday’s Outline

Operationalizing Multimodal Semantics

Reasoning with Affordances for Novelty Detection

Reasoning with Affordances to Ground Terms to Items

Concluding Remarks

Open Discussion

Pustejovsky and Krishnaswamy Semantics for Affordances and Actions
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Reasoning with Affordances

VoxSim and Multimodal Simulations

Human understanding depends on a wealth of common-sense
knowledge; humans perform much reasoning qualitatively.

To simulate events, every parameter must have a value
“Roll the ball.” How fast? In which direction?
“Roll the block.” Can this be done?
“Roll the cup.” Only possible in a certain orientation.

VoxML: Formal semantic encoding of properties of objects,
events, attributes, relations, functions.

VoxSim: What can situated grounding do? (Krishnaswamy,
2017)

Exploit numerical information demanded by 3D visualization;
Perform qualitative reasoning about objects and events;
Capture semantic context often overlooked by unimodal
language processing.
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Reasoning with Affordances

Embedding space vs. Embedding space

The situated common ground consists of the following state
information:

(1) a. A: The agents engaged in communication;
b. B: The shared belief space;
c. P: The objects and relations that are jointly perceived in
the environment;
d. E : The embedding space that both agents occupy in the
communication.

This embedding space is not the same as the “embedding space”
of a machine learning model.
But they are related/similar/analogous.

Pustejovsky and Krishnaswamy Semantics for Affordances and Actions
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Reasoning with Affordances

Embedding space vs. Embedding space

An “embedding space” represents the data after
dimensionality reduction

Embedding space is of lower dimensionality than the ambient
space where the “real” data lives

ML embedding space represents the data in a computationally
efficient format using vectors

In a simulation, the numerical event parameters are elements
of the ambient space

The rendering and visualization creates the
human-interpretable representation

ML embedding space: plays to computational efficiency

Situated embedding space: plays to human efficiency

Pustejovsky and Krishnaswamy Semantics for Affordances and Actions
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Reasoning with Affordances

Human vs. AI reasoning
Human reasoning

Humans are efficient at seeking out experiences that are
maximally-informative about our environments

Young children, particularly, rapidly expand concept
vocabulary with few to no examples

Humans explore the environment to test hypotheses and
explore object affordances

Pustejovsky and Krishnaswamy Semantics for Affordances and Actions
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Reasoning with Affordances

Human vs. AI reasoning
AI reasoning

Artificial neural networks require large numbers of samples to
train

∼5-8 layers of artificial neurons to approximate the processing
power of a single biological neuron

Artificial neural networks do not easily expand to
accommodate new concepts in real time

Forced-choice classifiers will assign one of known labels to all
inputs
Suboptimal options: model retraining, transfer learning with
pretrained models, etc.
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Reasoning with Affordances

Human vs. AI reasoning

Figure: L: Not how babies learn; R: How babies learn

Pustejovsky and Krishnaswamy Semantics for Affordances and Actions



9/60

Reasoning with Affordances

Reasoning with Affordances
Learning how to stack a cube

An agent can interact with various objects and see how they
behave differently under the same circumstances.

We train a TD3 reinforcement learning policy to learn to stack
two cubes.
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Reasoning with Affordances

Reasoning with Affordances
Learning how to stack a cube

Goal: select best numerical action to keep stacked block stable

Optimal action: places theme block centered atop destination
block

Can be moved (perturbed) anywhere within the search space

Episode terminates on success, or 10 failures

Reward shaping:
1000 for stacking successfully first time

-100 for each additional attempt (e.g., 900 for success on
second try)

9 for touching destination block but falling off
-1 for missing destination block entirely e.g., a 3-attempt
episode where agent 1) misses destination block; 2) touches
destination block but doesn’t stack; 3) stacks successfully
= -1 + 9 + 800 = 808 total return
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Reasoning with Affordances

Reasoning with Affordances
Learning how to stack a cube

Figure: TD3 training reward plots (2,000 training episodes)
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Reasoning with Affordances

Reasoning with Affordances
Learning how to stack a cube

An RL policy that can successfully stack cubes can...
successfully stack cubes

and not much else

We then use the successful cube-stacking policy to make the
agent attempt to stack other spheres, cylinders, and capsules
on a block:

forcing it to stack the other objects as if they were cubes.

Pustejovsky and Krishnaswamy Semantics for Affordances and Actions
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Reasoning with Affordances

Reasoning with Affordances
Learning the different affordances of objects

This control structure allowed us to identify differences in the
behaviors of the different objects in the stacking task.

These behaviors can be described in terms like cubes stack
successfully, spheres roll off, cylinders stack if oriented
properly, etc.

Differences in behavior can be characterized in terms of the
object’s affordances.

Pustejovsky and Krishnaswamy Semantics for Affordances and Actions
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Reasoning with Affordances

Reasoning with Affordances
Learning the different affordances of objects

Figure: Evaluation reward plots for stacking (in order) a cube, sphere,
cylinder, capsule, and small cube on a cube
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Reasoning with Affordances

Executing the Trained Policy over Objects
Collect object information for each stacking attempt in VoxSim

During evalution, we store: Object type, rotation at start, offset
(radians) between world and object upright axes at start, action
executed, rotation and offset from world after action, state after
action, reward, cumulative total and mean rewards over episode.

At the end of the action, a small “jitter” is applied, to simulate the
small force exerted on an object when it is released from a grasp, in
an otherwise hyper-precise virtual environment.

The post-action jitter is a small force perpendicular to the object’s
axis of symmetry, therefore implicitly encoding information about
the object’s habitat, as encoded in VoxML.

The stackability (or lack thereof), encoded in the distribution of

state observations, implicitly encodes an affordance.
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Reasoning with Affordances

Executing the Trained Policy over Objects
Collect object information for each stacking attempt in VoxSim

A cube, which is flat on all sides, can rest stably (multiples of π
2

)

The sphere rolls off, does not stack (height 1), comes to rest at an
arbitrary angle.

The cylinder shares properties with cubes (flat ends) and others
with spheres (round sides), in the last two rows.

the cylinder stacks successfully (height 2), and is resting
upright (θ ≈ 0)
it rolls off with the cylinder on its side (θ ≈ π

2
)
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Reasoning with Affordances

Object Similarity Analysis
CCA over raw behavioral data

Figure: Canoncical correlation analysis (CCA) results

CCA confirms intuitions displayed in evaluation reward plots

Anomalies: small cube is less similar to large cube than
cylinder is?

Raw data still needs some processing
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Reasoning with Affordances

Using Habitat and Affordance Embeddings
Training a model to predict object type from its behavior in stacking task

1D convolutional neural net (2 convolutional layers—256 and 128
hidden units, 2 64-unit fully-connected layers, and a softmax layer)

We train for 500 epochs using Adam optimizer, batch size of 100

(= 10 episodes), learning rate of 0.001.

Pustejovsky and Krishnaswamy Semantics for Affordances and Actions
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Reasoning with Affordances

Using Habitat and Affordance Embeddings
Training a model to predict object type from its behavior in stacking task

Left chart shows results without input of implicit habitat and affordance

information encoded in post-action jitter (66.5%). Right chart shows

results with those input features (94.5%).
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Using Habitat and Affordance Embeddings
Training a model to predict object type from its behavior in stacking task

Can’t you just tell if objects are different by looking at them?

Pustejovsky and Krishnaswamy Semantics for Affordances and Actions
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Reasoning with Affordances

Comparing Behavior with Visual Clues
Humans can tell that objects are different by visual clues

We compared the performance of the behavior-based classifier to a
2D CNN CIFAR-10 style object detector.

This classifier achieves a validation accuracy of 97.5%, but when

evaluated against an unseen test set of 140 novel images of the four

object classes (35 images each), accuracy falls below the

behavior-based classifier, to 90.7%.

Pustejovsky and Krishnaswamy Semantics for Affordances and Actions
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Reasoning with Affordances

Mistakes Made by the Visual Classifier

Figure: Sample of misrecognized objects. From left: cylinder
misrecognized as cube (1), and capsule (2), cylinder misrecognized as
cube (3), sphere (4), and capsule (5), and capsule misrecognized as
sphere (6).
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Reasoning with Affordances

Evaluating the Embedding Vectors

While some objects are visually distinct, like cube vs. sphere, other
object classes are more difficult to distinguish visually.

To confirm this, we draw out the 64-dimensional embedding vectors
from the final fully-connected layer.

These can be used to quantitatively assess the similarity of different
input samples to each other

Cosine similarity matrix of visual embedding vectors from 2D CNN.

Pustejovsky and Krishnaswamy Semantics for Affordances and Actions
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Reasoning with Affordances

Multimodal Semantics
Sight and behavior

Where vision may be ambiguous, behavior may be a stronger
signal

Embodiment drives affordance reasoning

Embodiment (and grounding) is more than only
language+vision

Integrated multimodal semantics a la VoxML facilitates
extraction of quantified embodied information from an
environment

Which leads to...

Pustejovsky and Krishnaswamy Semantics for Affordances and Actions
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Reasoning with Affordances

Novel Class Detection

Weakness of a forced-choice classifier:
Will output one of its known classes for any input;
Softmax layer obscures probability, confidence, representation.

Strength of a forced-choice classifier:
Embedding-level representations preserve similarity across
dimensions.

Novelty detection procedure:
1 Identify which known class an object is most similar to;
2 Determine if new object is different enough from most similar

known class to be considered novel.

Pustejovsky and Krishnaswamy Semantics for Affordances and Actions
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Reasoning with Affordances

Novel Class Detection

CCA shows that cube and sphere are the two mos dissimilar
objects

Correlates to prototypical “stackable” and “unstackable”
objects

Instantiate behavior CNN classifier with two classes:
cube/sphere

Pustejovsky and Krishnaswamy Semantics for Affordances and Actions
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Reasoning with Affordances

Novel Class Detection

Given known classes cube and sphere, cylinders usually
classified as cubes, capsules usually classified as spheres

Recapitulates observations from CCA and evaluation reward
plots

Pustejovsky and Krishnaswamy Semantics for Affordances and Actions
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Reasoning with Affordances

Novel Class Detection

If something is classified as sphere is it actually a sphere?
Or just sphere-like and I don’t know any better?

Get the embeddings for the input sample(s) and compare
them to embeddings model “knows” belong to the predicted
class (i.e., training embeddings)

Pustejovsky and Krishnaswamy Semantics for Affordances and Actions
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Reasoning with Affordances

Novel Class Detection
Odd properties of embedding spaces

Not as simple as constant similarity threshold between
embedding vectors

Differences in weight initialization may mean embeddings are
differently distributed each time

Pustejovsky and Krishnaswamy Semantics for Affordances and Actions
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Reasoning with Affordances

Novel Class Detection
Odd properties of embedding spaces

Same network, same data, same training, different initial
weights may mean

One trained model has dispersed or even near-isotropic vectors
One trained model clusters all vectors close together in high-D
space; absolute distance between classes is small

Pustejovsky and Krishnaswamy Semantics for Affordances and Actions
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Reasoning with Affordances

Novel Class Detection

This is now an outlier detection problem

Let Ð→µS , Ð→σS be the mean, stdev of the known class

Let Ð→µN be the mean of the new batch

Let Ð→v be a single sample

Pustejovsky and Krishnaswamy Semantics for Affordances and Actions
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Reasoning with Affordances

Novel Class Detection

Let Ð→µS , Ð→σS be the mean, stdev of the known class

Let Ð→µN be the mean of the new batch

Let Ð→v be a single sample

Compute ρÐ→v , the ratio of Ð→v ’s distance from Ð→µS to the overall
spread of embedding vectors in class S

ρÐ→v = cos(Ð→µS ,
Ð→v )

cos(Ð→µS ,
Ð→µS+Ð→σS)

If ρÐ→v > 1, add Ð→v to the set of outliers Ð→o ∈ O
(outliers are defined relative to a sample set)

Pustejovsky and Krishnaswamy Semantics for Affordances and Actions
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Reasoning with Affordances

Novel Class Detection

Compute ρÐ→v , the ratio of Ð→v ’s distance from Ð→µS to the overall
spread of embedding vectors in class S

ρÐ→v = cos(Ð→µS ,
Ð→v )

cos(Ð→µS ,
Ð→µS+Ð→σS)

If ρÐ→v > 1, add Ð→v to the set of outliers Ð→o ∈ O
(outliers are defined relative to a sample set)

Outlying samples may still belong to the known class
(e.g., sometimes a cube fails to stack properly due to bad
placement)

If
ρÐ→o −µρ
µρ

> 3, remove Ð→o from outlier set

Pustejovsky and Krishnaswamy Semantics for Affordances and Actions
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Reasoning with Affordances

Novel Class Detection

Outlying samples may still belong to the known class
(e.g., sometimes a cube fails to stack properly due to bad
placement)

If
ρÐ→o −µρ
µρ

> 3, remove Ð→o from outlier set

What this does is define a subspace in 64D space
bounded by non-extreme outlier vectors of each sample

Compute ratio of outliers in known class to outliers in new
batch:

Outlier ratio OR = ∑Ð→oN ∈ON
ρÐ→oN

∑Ð→oS ∈OS
ρÐ→oS

Scale OR by distance between known class and new batch
means, then normalize by spread of embeddings in known
class times denominator OR

Pustejovsky and Krishnaswamy Semantics for Affordances and Actions
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Reasoning with Affordances

Novel Class Detection

What this does is define a “core” subspace in 64D space
bounded by non-outlier vectors of each sample

Compute ratio of outliers in known class to outliers in new
batch:

Outlier ratio OR = ∑Ð→oN ∈ON
ρÐ→oN

∑Ð→oS ∈OS
ρÐ→oS

Scale OR by distance between known class and new batch
means, then normalize by spread of embeddings in known
class times denominator OR

Define a “dissimilarity threshold” T

If OR×cos(Ð→µS ,Ð→µN)
cos(Ð→µS ,µ⃗S+Ð→σS)×∑Ð→oS ∈OS

ρÐ→oS
> T , the new input samples likely

belong to new class!

Pustejovsky and Krishnaswamy Semantics for Affordances and Actions
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Novel Class Detection
Results

Evaluation: for a model beginning with cube and sphere
labels:

there are 2 novel objects that may occur: cylinder and capsule
and small cube, which is the same as cube

(not considering size as a distinguishing factor as parameters
indicating size are not captured in the raw data)

Correct result: detecting cylinder and capsule as novel, and
cube, sphere, and small cube as not novel

Correct result for model including cylinder: detecting capsule
as novel, and all other classes as not novel, etc.

Evaluation is performed 5 times in each condition to allow for
differences in weight initialization

Pustejovsky and Krishnaswamy Semantics for Affordances and Actions
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Reasoning with Affordances

Novel Class Detection
Results

Figure: Novel class detection accuracy without implicit habitat enoding
(left) and with (right)
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Novel Class Detection
Discussion

Can correctly identify the novelty of cylinders and capsules
based on behavior alone

Small cubes identified as same type as large cubes

Imprecise policy data slightly more challenging

Including implicit habitat/affordance information increases
performance by 25%

Pustejovsky and Krishnaswamy Semantics for Affordances and Actions
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Reasoning with Affordances

Novel Class Detection
Discussion

Figure: Aggregated 1D CNN classifier outputs over dev-test set. T:
accurate policy evaluation; B: imprecise policy evaluation; L: without
VoxML-derived inputs; R: with VoxML-derived inputs

Pustejovsky and Krishnaswamy Semantics for Affordances and Actions
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Reasoning with Affordances

Novel Class Detection
Discussion

Without habitat
information, classifier
confuses cylinders and
cubes, capsules and
spheres

Same patterns as
original two-class
classifier

Pustejovsky and Krishnaswamy Semantics for Affordances and Actions
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Reasoning with Affordances

Novel Class Detection
Discussion

Order of concept acquisition
matters

Detecting capsule concept before
cylinder impedes cylinder
detection

Capsule is more distinct from
sphere than cylinder is from cube
in its behavior

Capsule embedding vectors take up
more “space”

Makes the subtle cube/cylinder
distinction harder to detect

Pustejovsky and Krishnaswamy Semantics for Affordances and Actions
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Reasoning with Affordances

Metacognitive Agents

Method approximates certain metacognitive processes

Provides potential step toward computational “fast mapping”

Isn’t fast mapping usually used in the context of language
acquisition? Where’s the language?

Pustejovsky and Krishnaswamy Semantics for Affordances and Actions
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Reasoning with Affordances

Multimodal Grounding
A new approach

Modern multimodal grounding is usually achieved through
large multimodal models

e.g., using contrastive training methods a la CLIP

While these are often powerful in appropriately designed tasks
(e.g., grounding items to terms in a specified region), they do
not address

1 Data and computational power requirements
2 Grounding items to terms in a dynamically updating

embedding space

Pustejovsky and Krishnaswamy Semantics for Affordances and Actions
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Reasoning with Affordances

Multimodal Grounding
A new approach

Figure: Transforming features from different embedding spaces into
common space

Findings from the vision community: CNN embedding spaces
share interchangeability up to an affine transformation MA→B

Pustejovsky and Krishnaswamy Semantics for Affordances and Actions
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Multimodal Grounding
A new approach

Properties of transformation MA→B :

Given two embedding spaces A, B, where embeddings in each
are of dimensionality dA, dB

MA→B ∈ RdA ×RdB that transforms the representation of
C ∈ RdA to ∼ C ∈ RdB

Computed by minimizing distance between paired (equivalent)
points in A and B

Given two sets of objects (vectors) X and Y , are they the
“same” under an affine transformation?

Task is now to recover that transformation

Pustejovsky and Krishnaswamy Semantics for Affordances and Actions
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Reasoning with Affordances

Multimodal Grounding
A new approach

Different images of the same person, if both classified
correctly, should have similar but not identical embedding
vectors

Similarly, object embeddings from behavioral data are
distinct

They define a subspace

Similar to contextualized word embeddings a la BERT
Not identical, but point in the same direction

Use one set of vectors as inputs to a regressor and the other
as outputs

If inputs and outputs preserve similar information and
distinctions...

Pustejovsky and Krishnaswamy Semantics for Affordances and Actions
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Multimodal Grounding
A new approach

MA→B is the weights of a mapping function f (x ;W )
f (x ;W ) ∶ U ⊂ RdA → V ⊂ RdB ,where dB ≤ dA, s.t. f (x ∈ U) ≈
x ∈ V

inputs: U; outputs: V
Application of f to any element of U should approximate the
equivalent element of V

Pustejovsky and Krishnaswamy Semantics for Affordances and Actions
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Reasoning with Affordances

Multimodal Grounding
A new approach

Imagine two agents, a “child” agent playing with objects, and
a “parent” agent generating utterances containing object
references.

Model child agent as 1D CNN behavior classifier, parent agent
as Transformer language model

Child:

Parent:
“The block is flat.”

Pustejovsky and Krishnaswamy Semantics for Affordances and Actions
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Multimodal Grounding
A new approach

Child:

Parent:
“The block is flat.”

Take 64D embeddings from CNN model (grounded object
instances) as outputs

Take 768D embeddings from Transformer model
(contextualized token embeddings) as inputs

Compute MA→B as 768 × 64 affine matrix
Do new mentions of the same contextualized tokens cluster
with the correct objects?
Are different senses of the same word distinct from the object
mentions?

Pustejovsky and Krishnaswamy Semantics for Affordances and Actions
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Reasoning with Affordances

Multimodal Grounding
A new approach

Figure: BERT word vectors mapped into object vector space (reduced to
2 dimensions)
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Multimodal Grounding
A new approach

Novel instances of the known sense of the word “block” and
“ball” map into the sphere/cube subspaces

Different senses of the same words fall outside of those
subspaces

Pustejovsky and Krishnaswamy Semantics for Affordances and Actions
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Reasoning with Affordances

Multimodal Grounding
A new approach

Enables “decontextualized reference”

Agent can discuss items not present while maintaning
grounding to concept

Facilitates transfer between otherwise dissimilar models

Pustejovsky and Krishnaswamy Semantics for Affordances and Actions
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Reasoning with Affordances

Computing Requirements

Through effective use of existing resources, situated grounding
through simulation creates rich data for tasks like affordance
reasoning, metacognition, and grounding

None of the methods discussed above require lengthy GPU
training or specialized hardware

More compute helps, but problems are still tractable on
workstation or even a laptop

Pustejovsky and Krishnaswamy Semantics for Affordances and Actions
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Reasoning with Affordances

Computing Requirements

Each model uncovers different information

Common ground brings different information spaces together

One model can use its strengths to ameliorate another’s
weaknesses

Model augmentation through simple techniques by “grafting”
representations together

Pustejovsky and Krishnaswamy Semantics for Affordances and Actions
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Interfacing VoxWorld to New Domains and Applications

Teacher Assistant in Classroom
VoxWorld can model classroom dynamics and actions

Interpreted Augmented Reality
AR objects are semantically interpreted in VoxML, can be
reasoned about.

Sequence-to-sequence models;
description ⇒ animation
animation ⇒ description

Pustejovsky and Krishnaswamy Semantics for Affordances and Actions
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Reasoning with Affordances

VoxML Representation of Object Transformations

Objects afford actions (pealing)

Actions create new habitats for new actions (slicing)

Pustejovsky and Krishnaswamy Semantics for Affordances and Actions
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Reasoning with Affordances

Cross-modal VoxML representation of Actions
Alignment of multiple channels

Video sequence and key frames
Gesture actions depicting stages of a plan
Textual descriptions of actions
Iconic displays denoting orientations

Pustejovsky and Krishnaswamy Semantics for Affordances and Actions
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Reasoning with Affordances

Multimodal Processing Model (MPM) with VoxWorld
Grounding between VoxML, vision, and blackboard

Video regions ground symbolic representations in VoxML

VoxML representations align with blackboard states

Pustejovsky and Krishnaswamy Semantics for Affordances and Actions
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Reasoning with Affordances

Simulating Classroom Lesson Plans

Modeling classroom interactions allows us to generate
hundreds of alternative dialogues using multimodal channels.
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Concluding Remarks
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